Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Pain ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38709489

RESUMO

ABSTRACT: Terpenes are small hydrocarbon compounds that impart aroma and taste to many plants, including Cannabis sativa. A number of studies have shown that terpenes can produce pain relief in various pain states in both humans and animals. However, these studies were methodologically limited and few established mechanisms of action. In our previous work, we showed that the terpenes geraniol, linalool, ß-pinene, α-humulene, and ß-caryophyllene produced cannabimimetic behavioral effects via multiple receptor targets. We thus expanded this work to explore the potential antinociception and mechanism of these Cannabis terpenes in a mouse model of chronic pain. We first tested for antinociception by injecting terpenes (200 mg/kg, IP) into male and female CD-1 mice with mouse models of chemotherapy-induced peripheral neuropathy (CIPN) or lipopolysaccharide-induced inflammatory pain, finding that the terpenes produced roughly equal antinociception to 10 mg/kg morphine or 3.2 mg/kg WIN55,212. We further found that none of the terpenes produced reward as measured by conditioned place preference, while low doses of terpene (100 mg/kg) combined with morphine (3.2 mg/kg) produced enhanced antinociception vs either alone. We then used the adenosine A2A receptor (A2AR) selective antagonist istradefylline (3.2 mg/kg, IP) and spinal cord-specific CRISPR knockdown of the A2AR to identify this receptor as the mechanism for terpene antinociception in CIPN. In vitro cAMP and binding studies and in silico modeling studies further suggested that the terpenes act as A2AR agonists. Together these studies identify Cannabis terpenes as potential therapeutics for chronic neuropathic pain and identify a receptor mechanism for this activity.

2.
Mol Metab ; 84: 101933, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583571

RESUMO

OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.

3.
Aging Cell ; : e14138, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475941

RESUMO

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.

4.
Purinergic Signal ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526670

RESUMO

The P2Y6 receptor, activated by uridine diphosphate (UDP), is a target for antagonists in inflammatory, neurodegenerative, and metabolic disorders, yet few potent and selective antagonists are known to date. This prompted us to use machine learning as a novel approach to aid ligand discovery, with pharmacological evaluation at three P2YR subtypes: initially P2Y6 and subsequently P2Y1 and P2Y14. Relying on extensive published data for P2Y6R agonists, we generated and validated an array of classification machine learning model using the algorithms deep learning (DL), adaboost classifier (ada), Bernoulli NB (bnb), k-nearest neighbors (kNN) classifier, logistic regression (lreg), random forest classifier (rf), support vector classification (SVC), and XGBoost (XGB) classifier models, and the common consensus was applied to molecular selection of 21 diverse structures. Compounds were screened using human P2Y6R-induced functional calcium transients in transfected 1321N1 astrocytoma cells and fluorescent binding inhibition at closely related hP2Y14R expressed in CHO cells. The hit compound ABBV-744, an experimental anticancer drug with a 6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine scaffold, had multifaceted interactions with the P2YR family: hP2Y6R inhibition in a non-surmountable fashion, suggesting that noncompetitive antagonism, and hP2Y1R enhancement, but not hP2Y14R binding inhibition. Other machine learning-selected compounds were either weak (experimental anti-asthmatic drug AZD5423 with a phenyl-1H-indazole scaffold) or inactive in inhibiting the hP2Y6R. Experimental drugs TAK-593 and GSK1070916 (100 µM) inhibited P2Y14R fluorescent binding by 50% and 38%, respectively, and all other compounds by < 20%. Thus, machine learning has led the way toward revealing previously unknown modulators of several P2YR subtypes that have varied effects.

5.
Diabetes ; 73(5): 701-712, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320268

RESUMO

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.


Assuntos
Ácidos e Sais Biliares , Orosomucoide , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
Structure ; 32(5): 523-535.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38401537

RESUMO

We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.


Assuntos
Receptor A2A de Adenosina , Humanos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/química , Temperatura , Ligação Proteica , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Conformação Proteica , Células HEK293
7.
Purinergic Signal ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416332

RESUMO

The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1ß, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1ß, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.

9.
Mol Pharmacol ; 105(3): 213-223, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38182432

RESUMO

This study describes the localization and computational prediction of a binding site for the A3 adenosine receptor (A3AR) positive allosteric modulator 2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1H-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y2847.55 in TMD7 and Y2938.54 in H8 and by π-NH bonding between Y2847.55 and the exocyclic amine. The 2-cyclohexyl group is positioned "upward" within a small hydrophobic subpocket created by residues in TMDs 1 and 7, while the 3,4-dichlorophenyl group extends toward the lipid interface. An H-bond between the N-1 amine of the heterocycle and the carbonyl of G291.49 further stabilizes the interaction. Molecular dynamics simulations predicted two metastable intermediates, one resembling a pose determined by molecular docking and a second involving transient interactions with Y2938.54; in simulations, each of these intermediates converges into the final bound state. Structure-activity-relationships for replacement of either of the identified exocyclic or endocyclic amines with heteroatoms lacking H-bond donating ability were consistent with the hypothetical pose. Thus, we characterized an allosteric pocket for 1H-imidazo[4,5-c]quinolin-4-amines that is consistent with data generated by orthogonal methods, which will aid in the rational design of improved A3AR positive allosteric modulators. SIGNIFICANCE STATEMENT: Orthosteric A3AR agonists have advanced in clinical trials for inflammatory conditions, liver diseases, and cancer. Thus, the clinical appeal of selective receptor activation could extend to allosteric enhancers, which would induce site- and time-specific activation in the affected tissue. By identifying the allosteric site for known positive allosteric modulators, structure-based drug discovery modalities can be enabled to enhance the pharmacological properties of the 1H-imidazo[4,5-c]quinolin-4-amine class of A3AR positive allosteric modulators.


Assuntos
Aminas , Receptores Purinérgicos P1 , Simulação de Acoplamento Molecular , Regulação Alostérica , Receptores Purinérgicos P1/metabolismo , Sítios de Ligação , Sítio Alostérico , Simulação de Dinâmica Molecular , Lipídeos
10.
ACS Med Chem Lett ; 14(12): 1640-1646, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116442

RESUMO

A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 µM, without activity (30 µM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.

11.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905159

RESUMO

Protein function strongly depends on temperature, which is related to temperature-dependent changes in the equilibria of protein conformational states. We leveraged variable-temperature 19F-NMR spectroscopy to interrogate the temperature dependence of the conformational landscape of the human A2A adenosine receptor (A2AAR), a class A GPCR. Temperature-induced changes in the conformational equilibria of A2AAR in lipid nanodiscs were markedly dependent on the efficacy of bound drugs. While antagonist complexes displayed only modest changes as the temperature rose, both full and partial agonist complexes exhibited substantial increases in the active state population. Importantly, the temperature-dependent response of complexes with both full and partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. In striking contrast to observations within lipid nanodiscs, in detergent micelles the active state population exhibited different behavior for A2AAR complexes with both full and partial agonists. This underscores the importance of the protein environment in understanding the thermodynamics of GPCR activation.

12.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873427

RESUMO

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.

13.
ACS Pharmacol Transl Sci ; 6(9): 1288-1305, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705595

RESUMO

(N)-Methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at N6 and C2 positions with terminal alkenes for ring closure. The resulting macrocycles of 17-20 atoms retained affinity, indicating a spatially proximal orientation of these receptor-bound chains, consistent with molecular modeling of 12. C2-Arylethynyl-linked macrocycle 19 was more A3AR-selective than 2-ether-linked macrocycle 12 (both 5'-methylamides, human (h) A3AR affinities (Ki): 22.1 and 25.8 nM, respectively), with lower mouse A3AR affinities. Functional hA3AR comparison of two sets of open/closed analogues in ß-arrestin2 and Gi/o protein assays showed certain signaling preferences divergent from reference agonist Cl-IB-MECA 1. The potencies of 1 at all three Gαi isoforms were slightly less than its hA3AR binding affinity (Ki: 1.4 nM), while the Gαi1 and Gαi2 potencies of macrocycle 12 were roughly an order of magnitude higher than its radioligand binding affinity. Gαi2-coupling was enhanced in macrocycle 12 (EC50 2.56 nM, ∼40% greater maximal efficacy than 1). Di-O-allyl precursor 18 cyclized to form 19, increasing the Gαi1 potency by 7.5-fold. The macrocycles 12 and 19 and their open precursors 11 and 18 potently stimulated ß-arrestin2 recruitment, with EC50 values (nM) of 5.17, 4.36, 1.30, and 4.35, respectively, and with nearly 50% greater efficacy compared to 1. This example of macrocyclization altering the coupling pathways of small-molecule (nonpeptide) GPCR agonists is the first for potent and selective macrocyclic AR agonists. These initial macrocyclic derivatives can serve as a guide for the future design of macrocyclic AR agonists displaying unanticipated pharmacology.

14.
J Med Chem ; 66(17): 12249-12265, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37603705

RESUMO

Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/farmacologia , Antagonistas de Receptores de Andrógenos , Imunoterapia , Antagonistas de Receptores Purinérgicos P1 , Relação Estrutura-Atividade , Tionucleosídeos/química , Tionucleosídeos/farmacologia
15.
Eur J Med Chem ; 259: 115691, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562117

RESUMO

(N)-Methanocarba adenosine derivatives were structurally modified to target 5-HT2B serotonin receptors as antagonists, predominantly containing branched N6-alkyl groups. N6-Dicycloalkyl-methyl groups, including their asymmetric variations, as well as 2-iodo, were found to generally favor 5-HT2Rs, while only N6-dicyclohexyl-methyl derivative 35 showed weak 5-HT2AR affinity (Ki 3.6 µM). The highest 5-HT2BR affinities were Ki 11-23 nM (N6-dicyclopropyl-methyl-2-iodo 11, 2-chloro-5'-deoxy-5'-methylthio 15 and N6-((R)-cyclobuty-cyclopropyl-methyl)-2-iodo 43), and Ki 73 nM at 5-HT2CR for 36. Direct comparison of adenine ribosides and their corresponding rigid (N)-methanocarba derivatives (cf. 51 and MRS8099 45) indicated a multifold affinity enhancement with the bicyclic ring system. Compounds 43, 45 and 48 were functional 5-HT2BR (KB 2-3 nM) and 5-HT2CR (KB 79-328 nM) antagonists in a Gq-mediated calcium flux assay, with 5-HT2BR functional selectivity ranging from 45- (48) to 113-fold (43). Substantial adenosine receptor (AR) affinity (Ki, A1AR < Ki, A3AR < Ki, A2AAR) was still present in this series, suggestive of dual acting compounds: 5-HT2B antagonist and A1AR agonist, potentially useful for treating chronic conditions (fibrosis; pain). Given its affinity (17 nM) and moderate 5-HT2BR binding selectivity (32-fold vs. 5-HT2CR, 4-fold vs. A1AR), 43 (MRS7925) could potentially be useful for anti-fibrotic therapy.


Assuntos
Adenosina , Serotonina , Antagonistas da Serotonina , Relação Estrutura-Atividade , Receptores Purinérgicos P1 , Receptor 5-HT2B de Serotonina
16.
iScience ; 26(7): 107178, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37404375

RESUMO

Protein kinase C (PKC) isoforms regulate many important signaling pathways. Here, we report that PKC activation by phorbol 12-myristate 13-acetate (PMA) enhanced A2B adenosine receptor (AR)-mediated, but not ß2-adrenergic receptor-mediated, cAMP accumulation, in H9C2 cardiomyocyte-like and HEK293 cells. In addition to enhancement, PKC (PMA-treatment) also activated A2BAR with low Emax (H9C2 and NIH3T3 cells endogenously expressing A2BAR), or with high Emax (A2BAR-overexpressing HEK293 cells) to induce cAMP accumulation. A2BAR activation induced by PKC was inhibited by A2BAR and PKC inhibitors but enhanced by A2BAR overexpression. Gαi isoforms and PKCγ isoform were found to be involved in both enhancement of A2BAR function and A2BAR activation. Thus, we establish PKC as an endogenous modulator and activator of A2BAR, involving Giα and PKCγ. Depending on signaling pathway, PKC could activate and enhance, or alternatively inhibit A2BAR activity. These findings are relevant to common functions of A2BAR and PKC, e.g. cardioprotection and cancer progression/treatment.

17.
J Med Chem ; 66(13): 9076-9094, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37382926

RESUMO

P2Y14 receptor (P2Y14R) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2Y14R antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2Y14R antagonist (4-phenyl-2-naphthoic acid derivative) PPTN 1 was varied from 4- to 8-membered rings, with bridging/functional substitution. Conformationally and sterically modified isosteres included N-containing spirocyclic (6-9), fused (11-13), and bridged (14, 15) or large (16-20) ring systems, either saturated or containing alkene or hydroxy/methoxy groups. The alicyclic amines displayed structural preference. An α-hydroxyl group increased the affinity of 4-(4-((1R,5S,6r)-6-hydroxy-3-azabicyclo[3.1.1]heptan-6-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid 15 (MRS4833) compared to 14 by 89-fold. 15 but not its double prodrug 50 reduced airway eosinophilia in a protease-mediated asthma model, and orally administered 15 and prodrugs reversed chronic neuropathic pain (mouse CCI model). Thus, we identified novel drug leads having in vivo efficacy.


Assuntos
Receptores Purinérgicos P2 , Camundongos , Animais , Receptores Purinérgicos P2/metabolismo , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Uridina Difosfato Glucose/metabolismo
18.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034662

RESUMO

Terpenes are small hydrocarbon compounds that impart aroma and taste to many plants, including Cannabis sativa. A number of studies have shown that terpenes can produce pain relief in various pain states in both humans and animals. However, these studies were methodologically limited and few established mechanisms of action. In our previous work, we showed that the terpenes geraniol, linalool, ß-pinene, α-humulene, and ß-caryophyllene produced cannabimimetic behavioral effects via multiple receptor targets. We thus expanded this work to explore the efficacy and mechanism of these Cannabis terpenes in relieving chronic pain. We first tested for antinociceptive efficacy by injecting terpenes (200 mg/kg, IP) into male and female CD-1 mice with chemotherapy-induced peripheral neuropathy (CIPN) or lipopolysaccharide-induced inflammatory pain, finding that the terpenes produced roughly equal efficacy to 10 mg/kg morphine or 3.2 mg/kg WIN55,212. We further found that none of the terpenes produced reward as measured by conditioned place preference, while low doses of terpene (100 mg/kg) combined with morphine (3.2 mg/kg) produced enhanced antinociception vs. either alone. We then used the adenosine A2A receptor (A2AR) selective antagonist istradefylline (3.2 mg/kg, IP) and spinal cord-specific CRISPR knockdown of the A2AR to identify this receptor as the mechanism for terpene antinociception in CIPN. In vitro cAMP and binding studies and in silico modeling studies further suggested that the terpenes act as A2AR agonists. Together these studies identify Cannabis terpenes as potential therapeutics for chronic neuropathic pain, and identify a receptor mechanism in the spinal cord for this activity.

19.
Nat Commun ; 14(1): 794, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781870

RESUMO

G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we explore the impact of anionic lipids on the function-related conformational equilibria of the human A2A adenosine receptor (A2AAR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids prime the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeds through a less favorable induced fit mechanism. In computational models, anionic lipids mimic interactions between a G protein and positively charged residues in A2AAR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly alters the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.


Assuntos
Proteínas de Ligação ao GTP , Fosfolipídeos , Humanos , Fosfolipídeos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Conformação Molecular , Transdução de Sinais , Bicamadas Lipídicas/química
20.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711594

RESUMO

G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A 2A adenosine receptor (A 2A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids primed the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeded through a less favorable induced fit mechanism. In computational models, anionic lipids mimicked interactions between a G protein and positively charged residues in A 2A AR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly altered the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA